8,123 research outputs found

    Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes

    Full text link
    In the past, a maximum-entropy model was introduced and applied to the study of statistical scattering by chaotic cavities, when short paths may play an important role in the scattering process. In particular, the validity of the model was investigated in relation with the statistical properties of the conductance in open chaotic cavities. In this article we investigate further the validity of the maximum-entropy model, by comparing the theoretical predictions with the results of computer simulations, in which the Schroedinger equation is solved numerically inside the cavity for one and two open channels in the leads; we analyze, in addition to the conductance, the zero-frequency limit of the shot-noise power spectrum. We also obtain theoretical results for the ensemble average of this last quantity, for the orthogonal and unitary cases of the circular ensemble and an arbitrary number of channels. Generally speaking, the agreement between theory and numerics is good. In some of the cavities that we study, short paths consist of whispering gallery modes, which were excluded in previous studies. These cavities turn out to be all the more interesting, as it is in relation with them that we found certain systematic discrepancies in the comparison with theory. We give evidence that it is the lack of stationarity inside the energy interval that is analyzed, and hence the lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement between theory and numerical simulations is improved when the energy interval is reduced to a point and the statistics is then collected over an ensemble. It thus appears that the maximum-entropy model is valid beyond the domain where it was originally derived. An understanding of this situation is still lacking at the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure

    Interference Phenomena in Electronic Transport Through Chaotic Cavities: An Information-Theoretic Approach

    Full text link
    We develop a statistical theory describing quantum-mechanical scattering of a particle by a cavity when the geometry is such that the classical dynamics is chaotic. This picture is relevant to a variety of systems, ranging from atomic nuclei to microwave cavities; the main application here is to electronic transport through ballistic microstructures. The theory describes the regime in which there are two distinct time scales, associated with a prompt and an equilibrated response, and is cast in terms of the matrix of scattering amplitudes S. The prompt response is related to the energy average of S which, through ergodicity, is expressed as the average over an ensemble of systems. We use an information-theoretic approach: the ensemble of S-matrices is determined by (1) general physical features-- symmetry, causality, and ergodicity, (2) the specific energy average of S, and (3) the notion of minimum information in the ensemble. This ensemble, known as Poisson's kernel, is meant to describe those situations in which any other information is irrelevant. Thus, one constructs the one-energy statistical distribution of S using only information expressible in terms of S itself without ever invoking the underlying Hamiltonian. This formulation has a remarkable predictive power: from the distribution of S we derive properties of the quantum conductance of cavities, including its average, its fluctuations, and its full distribution in certain cases, both in the absence and presence prompt response. We obtain good agreement with the results of the numerical solution of the Schrodinger equation for cavities in which either prompt response is absent or there are two widely separated time scales. Good agreement with experimental data is obtained once temperature smearing and dephasing effects are taken into account.Comment: 38 pages, 11 ps files included, uses IOP style files and epsf.st

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model

    Full text link
    We propose an information-theoretic model for the transport of waves through a chaotic cavity in the presence of absorption. The entropy of the S-matrix statistical distribution is maximized, with the constraint =αn =\alpha n: n is the dimensionality of S, and 0≤α≤1,α=0(1)0\leq \alpha \leq 1, \alpha =0(1) meaning complete (no) absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential -Rayleigh statistics- even for n=1. For n≫1n\gg 1 Rayleigh statistics is attained even with no absorption; here we extend the study to α<1\alpha <1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in the latter regime, some important physical constraint is missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure

    Statistical wave scattering through classically chaotic cavities in the presence of surface absorption

    Full text link
    We propose a model to describe the statistical properties of wave scattering through a classically chaotic cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching an "absorbing patch" to the inner wall of the cavity. In our model, the cavity is connected to the outside by a waveguide with N open modes (or channels), while an experimental patch is simulated by an "absorbing mirror" attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scattering matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the lack of unitarity of Sa as a measure of absorption, are under our control: these parameters have an important physical significance for real experiments. The absorption strength in the cavity is quantified by the trace of the lack of unitarity. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing channel, Na =1, is solved analytically for the orthogonal and unitary universality classes, and the results are compared with those arising from numerical simulations. The relation with other models existing in the literature, in some of which absorption has a volumetric character, is also studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities

    Full text link
    Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic cavities in the presence of absorption. Analytical results for the variance of the parametric derivative of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-right symmetric cavities. These results are valid for arbitrary number of channels, in completely agreement with the one channel case in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR

    Quantum interference and the spin orbit interaction in mesoscopic normal-superconducting junctions

    Full text link
    We calculate the quantum correction to the classical conductance of a disordered mesoscopic normal-superconducting (NS) junction in which the electron spatial and spin degrees of freedom are coupled by an appreciable spin orbit interaction. We use random matrix theory to describe the scattering in the normal part of the junction and consider both quasi-ballistic and diffusive junctions. The dependence of the junction conductance on the Schottky barrier transparency at the NS interface is also considered. We find that the quantum correction is sensitive to the breaking of spin rotation symmetry even when the junction is in a magnetic field and time reversal symmetry is broken. We demonstrate that this sensitivity is due to quantum interference between scattering processes which involve electrons and holes traversing closed loops in the same direction. We explain why such processes are sensitive to the spin orbit interaction but not to a magnetic field. Finally we consider the effect of the spin orbit interaction on the phenomenon of ``reflectionless tunnelling.''Comment: Revised version, one new figure and revised text. This is the final version which will appear in Journal de Physqiue 1. Latex plus six postscript figure
    • …
    corecore